If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+120x=0
a = 15; b = 120; c = 0;
Δ = b2-4ac
Δ = 1202-4·15·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-120}{2*15}=\frac{-240}{30} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+120}{2*15}=\frac{0}{30} =0 $
| 268÷n=0.268 | | x+75=75+2x | | 9(t+3)/2-6t=3 | | 12m-5=3m+31 | | −4(5−x)=4/5(x+3) | | 1/5=6x | | 0.5=3x+1 | | 6x+18=-3x+2 | | 10/a=8/12 | | -1=-3+x/8 | | -2(x+5)=-40 | | 63.43+87.15+81.96+x=311.62 | | -2(y+3)=y+24 | | 6x^2-54^=0 | | 8k-8+k-6=4 | | 2x=7/x+1 | | x+24/2=13 | | 11-47=3(x-5)-9 | | 5(x-9)=-60 | | x*(9-2*x)=10 | | -30+5x=120 | | 7(m+5)=2 | | c/10=15 | | 3x-4=14 | | x+23/19=-3/19 | | 4x(5-2×)/5=3/5 | | 30x=12(2x+11) | | -2(x+3)=-34 | | -2=−2x+4 | | 7=63/m | | 10x+24=x2 | | 3/5x-30=12 |